Bioinformatics

Overview

Prokaryote - Eukaryote

Prokaryote	Eukaryote
Older and less evolved	Younger and more evolved
 Construction: Has no nucleus Has no Endoplasmatic reticulum DNA in a single circular molecule 	 Construction: Has a nucleus Has a Endoplasmatic reticulum DNA in form of chromosomes

E.g.: Bacteria, Archaeas

E.g.: Plants, Animals, Protozoas

Prokaryote - Eukaryote

Archaeas

- Constructed like prokaryote
- Anaerobic
- Incidence in extreme conditions e.g. deep depths

Phases of the Process and their relevant Microorganisms

Polysaccharide Degradation

Phases of the Process and their relevant Microorganisms

Acetogenesis and Methanogenesis

The composition of nucleic acids of the microbe community can give us information about the happenings.

What are the aims of Bioinformatics?

DNA and RNA

(Deoxyribonucleicacid and Ribonucleicacid)

DNA		RNA		
Contention: - Deoxyribose - Base - phosphate	HOCH ₂ O 4' C H H C 1' H C C C H H H C 1' OH H Deoxyribose	Contention: - Ribose - Base - phosphate	$HOCH_2 O OH OH C 1' H C 1' H C 1' H C 1' H OH OH OH Ribose$	
Bases: - Adenin - Guanin	- Cytosin - Thymin	Bases: - Adenin - Guanin	- Cytosin - Uracil	
- Double strand helix		- Usually single strand		
Location: - Nucleus (in eukaryotic cells also in mitochondrias and chloroplasts, in prokaryotic cell in cytoplasma)		Location: - Nucleus, ribosomes, cytoplasma		
Amplification: - Replicates itself - Replication		Amplification: - Needs to be transcripted from DNA - Transcription		

What are the aims of Bioinformatics?

- Analysis of the taxonomic composition
- Analysis of the metabolism
- Discovery of new microorganisms
- Identification of new gen
 - functions/enzymes
- Comparison of different processes
- Analysis of the gen-content
- Optimisation of the processes

<u>Aim</u>: Total optimisation of the biogas process chain for the increase of the operational, metabolic, energetic and ecological efficiency.

NCBI

- NCBI = National Center for Biotechnology
 Information
- Public database with DNA, RNA and Protein Sequences
- <u>http://www.ncbi.nlm.nih.gov/</u>

Identification of an unknown DNA-Sequence with BLAST

• Exemplified on a sequence which is the code for the 16S rRNA

What is 16S ribosomal RNA and why do we use it?

• It is a part of Ribosoms

What is 16S ribosomal RNA and why do we use it?

- It is a part of Ribosoms
- S is a unit for molecules for their weight and their size
- rRNA is part of Ribosoms
- We work with 16S rRNAs because they have a suitable number of nucleotides

What is BLAST?

• BLAST = **B**asic Local **A**lignment **S**earch Tool

What is an Alignment?

 It is a comparison of two sequences and their parallelism is shown by vertical lines

What is BLAST?

- BLAST = **B**asic Local **A**lignment **S**earch Tool
- Verify unknown sequences with known sequences from databases
- Unknown sequence is called "Query"
- Located similar sequences is called "Subject"
- Results are shown in a hit-list
- It is a part of NCBI

How does it works? - Overview

- Step 1: Open the file with the sequence
- Step 2: Copy the DNA Sequence with its titleline
- Step 3: Open the NCBI-BLAST-Website: http://blast.ncbi.nlm.nih.gov/Blast.cgi
- Step 4: Choose the program **nucleotide blast**
- Step 5: Insert the file content into the window
- Step 6: Selection of the datas "16S ribosomal RNA sequences (Bacteria and Archaebacteria)"